Body and skull morphometric variations between two shovel-headed species of Amphisbaenia (Reptilia: Squamata) with morphofunctional inferences on burrowing

Abstract

Background. Morphological descriptions comparing Leposternon microcephalum and L. scutigerum have beenmade previously. However, these taxa lack a formal quantitative morphological characterization, and comparative studies suggest that morphology and burrowing performance are be related. The excavatorymovements of L. microcephalum have been described in detail. However, there is a lack of studies comparing locomotor patterns and/or performance among different amphisbaenids sharing the same skull shape. This paper presents the first study of comparative morphometric variations between two closely related amphisbaenid species, L. microcephalum and L. scutigerum, with functional inferences on fossorial locomotion efficiency. Methods. Inter-specific morphometric variations were verified through statistical analyses of body and cranialmeasures of L. microcephalum and L. scutigerum specimens. Their burrowing activity was assessed through X-ray videofluoroscopy and then compared. The influence of morphological variation on the speed of digging was tested among Leposternon individuals. Results. Leposternon microcephalum and L. scutigerum are morphometrically distinct species. The first is shorter and robust with a wider head while the other is more elongated and slim with a narrower head. They share the same excavatory movements. The animals analyzed reached relatively high speeds, but individuals with narrower skulls dug faster. A negative correlation between the speed and the width of skull was determined, but not with total length or diameter of the body. Discussion. The morphometric differences between L. microcephalum and L. scutigerum are in accord with morphological variations previously described. Since these species performed the same excavation pattern, we may infer that closely related amphisbaenids with the same skull type would exhibit the same excavatory How to cite this article Hohl et al. (2017), Body and skull morphometric variations between two shovel-headed species of Amphisbaenia (Reptilia: Squamata) with morphofunctional inferences on burrowing. PeerJ 5:e3581; DOI 10.7717/peerj.3581 pattern. The negative correlation between head width and excavation speed is also observed in others fossorial squamates. The robustness of the skull is also related to compression force in L. microcephalum. Individuals with wider heads are stronger. Thus, we suggest trade-offs between excavation speed and compression force during burrowing in this species. Subjects Animal Behavior, Zoology

Topics

10 Figures and Tables

Download Full PDF Version (Non-Commercial Use)